G5-IVI5-Lesson 8

1. I have a prism with the dimensions of 8 in by 12 in by 20 in. Calculate the volume of the prism, and then give the dimensions of two different prisms that each have $\frac{1}{4}$ of the volume.

To find $\frac{1}{4}$ of the volume, I can use the original prism's volume divided by 4. $\frac{1}{4}$ of 1,920 in³ is equal to 480 in³.

	Length	Width	Height	Volume
Original Prism	8 in.	12 in.	20 in.	1,920 in ³

I multiply the three dimensions to find the original volume. $8 \text{ in} \times 12 \text{ in} \times 20 \text{ in} = 1,920 \text{ in}^3$

	Length	Width	Height	Volume
Prism 1	2 in.	12 in.	20 in.	480 in ³
	1			7 🔍

In order to create a volume that is $\frac{1}{4}$ of 1,920, I can change one of the dimensions and keep the others the same. $\frac{1}{4}$ of 8 in = 2 in

$$2 \text{ in} \times 12 \text{ in} \times 20 \text{ in} = 480 \text{ in}^3$$

	Length	Width	Height	Volume
Prism 2	8 in.	6 in.	10 in.	480 in ³

Another way I can create a volume that is $\frac{1}{4}$ of 1,920 is to change two of the dimensions and keep the other the same.

$$\frac{1}{2}$$
 of 12 in = 6 in $\frac{1}{2}$ of 20 in = 10 in

Lesson 8:

Apply concepts and formulas of volume to design a sculpture using rectangular prisms within given parameters.

Kayla's bedroom has a volume of 800 ft^3 . $10 \text{ ft} \times 8 \text{ ft} \times 10 \text{ ft} = 800 \text{ ft}^3$

One way to double the volume is to double one dimension and keep the others the same.

2. Kayla's bedroom has the dimensions of 10 ft by 8 ft by 10 ft. Her den has the same height (10 ft) but double the volume. Give two sets of the possible dimensions of the den and the volume of the den.

Length: $10 \text{ ft} \times 2 = 20 \text{ ft}$

I can double the length, $10 \text{ ft} \times 2 = 20 \text{ ft}$, and keep both the width and the height the same.

Width: 8 ft

Height: 10 ft

Volume = 20 ft × 8 ft × 10 ft = 1,600 ft³

 $1,600 \text{ ft}^3$ is double the original volume of 800 ft^3 .

Length: $10 \text{ ft} \times 4 = 40 \text{ ft}$

Width: 8 ft $\times \frac{1}{2} = 4$ ft

In order to double the volume, I can also quadruple the length and cut the width in half.

Height: 10 ft

Volume = $40 \text{ ft} \times 4 \text{ ft} \times 10 \text{ ft} = 1,600 \text{ ft}^3$

 $1,600 \; \mathrm{ft^3}$ is double the original volume of $800 \; \mathrm{ft^3}$.