100 mL

80 mL

G5-M5-Lesson 5

1. Kevin filled a container with 40 centimeter cubes. Shade the beaker to show how much water the container will hold. Explain how you know.

It will hold 40 milliliters of water. I know that 1 $\rm cm^3=1\ mL$. Therefore, 40 $\rm cm^3$ is equal to 40 $\rm mL$

I know $1 \text{ cm}^3 = 1 \text{ mL}$, so $40 \text{ cm}^3 = 40 \text{ mL}$. I will shade the water level to 40 milliliters.

2. A beaker contains 200 mL of water. Joe wants to pour the water into a container that will hold the water. Which of the containers pictured below could he use? Explain your choices.

$$V_B = 7 \text{ cm} \times 6 \text{ cm} \times 3 \text{ cm}$$

$$= 126 \text{ cm}^3$$
Since $126 \text{ cm}^3 = 126 \text{ mL}$, this container cannot hold 200 mL of water.

I can find the volume of container C by multiplying the area of the front face by the width.

$$V_C = 20 \text{ cm}^2 \times 10 \text{ cm}$$

= 200 cm³

Since $200 \text{ cm}^3 = 200 \text{ mL}$, this container can hold 200 mL of water.

I can find the volume of container D by multiplying the area of the top face by the height.

$$V_D = 75 \text{ cm}^2 \times 2 \text{ cm}$$
$$= 150 \text{ cm}^3$$

Since $150 \text{ cm}^3 = 150 \text{ mL}$, this container will not be able to hold 200 mL of water.

Joe will be able to use container A because the volume is $320~\rm cm^3$. He will also be able to use container C because the volume is $200~\rm cm^3$. He will not be able to use containers B and D because they are too small.