## G5-M5-Lesson 13

- 1. Find the area of the following rectangles. Draw an area model if it helps you.
  - a.  $\frac{35}{1}$  ft  $\times$  2 $\frac{3}{5}$  ft I can use multiplication to find the area.

$$\frac{35}{4} \times \frac{17}{7}$$
 | I can rename  $2\frac{3}{7}$  as a fraction greater than one,  $\frac{17}{7}$ .

$$= \frac{3\cancel{\sqrt{17}}}{\cancel{4} \times \cancel{\sqrt{1}}}$$

$$= \frac{\cancel{5} \times \cancel{17}}{\cancel{4} \times \cancel{1}}$$

$$= \frac{85}{\cancel{4}}$$

35 and 7 have a common factor of 7.  $35 \div 7 = 5$ , and  $7 \div 7 = 1$ . The new numerator is  $5 \times 17$ , and the denominator is  $4 \times 1$ .

$$=\frac{3}{4}$$
$$=21\frac{1}{4}$$

I can use division to convert from a fraction to a mixed number. 85 divided by 4 is equal to  $21\frac{1}{4}$ .

$$Area = 21\frac{1}{4}ft^2$$

4 m

 $\frac{2}{3}$  m

b. 
$$4\frac{2}{3} \text{ m} \times 2\frac{3}{5} \text{ m}$$

I use the area model to solve this problem.

| 2 m      | 8 m²                                                        | $\frac{4}{3}$ m <sup>2</sup> = $1\frac{1}{3}$ m <sup>2</sup> |  |
|----------|-------------------------------------------------------------|--------------------------------------------------------------|--|
| 3<br>E m | $\frac{12}{5}  \mathrm{m^2} = 2  \frac{2}{5}  \mathrm{m^2}$ | $\frac{6}{15}$ m <sup>2</sup>                                |  |

I can multiply to find all four partial products.

$$2 \text{ m} \times 4 \text{ m} = 8 \text{ m}^2$$

$$2 \text{ m} \times \frac{2}{3} \text{ m} = \frac{4}{3} \text{ m}^2 = 1 \frac{1}{3} \text{ m}^2$$

$$2 \text{ m} \times \frac{7}{3} \text{ m} = \frac{4}{3} \text{ m}^2 = 1\frac{1}{3} \text{ m}^2$$

$$\frac{3}{5} \text{ m} \times 4 \text{ m} = \frac{12}{5} \text{ m}^2 = 2\frac{2}{5} \text{ m}^2$$

$$\frac{3}{5} \text{ m} \times \frac{2}{3} \text{ m} = \frac{6}{15} \text{ m}^2$$

$$\frac{3}{5}$$
 m  $\times \frac{2}{3}$  m  $= \frac{6}{15}$  m<sup>2</sup>

I can add all four partial products to find the area.

$$8 m^{2} + 1\frac{1}{3} m^{2} + 2\frac{2}{5} m^{2} + \frac{6}{15} m^{2}$$

$$= 11 m^{2} + \frac{1}{3} m^{2} + \frac{2}{5} m^{2} + \frac{6}{15} m^{2}$$

$$= 11 m^{2} + \frac{5}{15} m^{2} + \frac{6}{15} m^{2} + \frac{6}{15} m^{2}$$

$$= 11 m^{2} + \frac{17}{15} m^{2}$$

$$= 11 m^{2} + 1\frac{2}{15} m^{2}$$

$$= 12\frac{2}{15} m^{2}$$

$$Area = 12 \frac{2}{15} m^2$$

Lesson 13:

Multiply mixed number factors, and relate to the distributive property and the area model.

2. Meigan is cutting rectangles out of fabric to make a quilt. If the rectangles are  $4\frac{3}{4}$  inches long and  $2\frac{1}{2}$  inches wide, what is the area of five such rectangles?



I can find the area of 1 rectangle, and then multiply by 5 to find the total area of 5 rectangles.

I draw an area model to help solve for the area of 1 rectangle.

$$= (4 \times 2) + \left(4 \times \frac{1}{2}\right) + \left(\frac{3}{4} \times 2\right) + \left(\frac{3}{4} \times \frac{1}{2}\right)$$
$$= 8 + \frac{4}{2} + \frac{6}{4} + \frac{3}{8}$$

I can add up the four partial products. The area of 1 rectangle is  $11\frac{7}{8}$  square inches.

$$= 8 + 2 + 1\frac{2}{4} + \frac{3}{8}$$
$$= 11 + \frac{4}{8} + \frac{3}{8}$$
$$= 11\frac{7}{8}$$

 $4\frac{3}{4} \times 2\frac{1}{2}$ 

$$1 \text{ unit} = 11\frac{7}{8} \text{ in}^2$$
$$5 \text{ units} = 5 \times 11\frac{7}{8} \text{ in}^2$$

The area of 1 rectangle or 1 unit is equal to  $11\frac{7}{8}$  square inches. I can multiply by 5 to find the area of 5 rectangles or 5 units.

$$(5 \times 11) + \left(5 \times \frac{7}{8}\right)$$
$$= 55 + \frac{35}{8}$$
$$= 55 + 4\frac{3}{8}$$
$$= 59\frac{3}{8}$$

The area of five rectangles is  $59\frac{3}{8}$  square inches.