## G5-W4-Lesson 6

1. Find the value of the following.



$$\frac{2}{3} \text{ of } 15 = 10$$

$$\frac{3}{3} \text{ of } 15 = 15$$

$$\frac{3}{3} \text{ represents } all \text{ of the stars, or the amount found in all } 3 \text{ columns.}$$

2. Find  $\frac{3}{4}$  of 12. Draw a set, and shade to show your thinking.

The total in the array has to be 12. Since I'm trying to find fourths, I can draw a row of 4 circles. I can draw a second row of 4 circles and continue drawing rows until I have a total of 12 circles.



 $\frac{3}{4}$  of 12 = 9

I shaded 3 out of the 4 columns. I counted how many circles I shaded to find the answer.

I drew vertical lines to clearly show the fourths. Each column represents  $\frac{1}{4}$  of 12.

3. How does knowing  $\frac{1}{3}$  of 18 help you find  $\frac{2}{3}$  of 18? Draw a picture to explain your thinking.

I know I need a set of 18. Since I'm finding a third of 18, I drew rows of 3.



From my drawing, I know  $\frac{1}{3}$  of 18 is 6.

 $\frac{2}{3}$  of 18 is twice as much as  $\frac{1}{3}$  of 18.

$$\frac{2}{3}$$
 of  $18 = 12$ .

 $\frac{1}{3}$  of 18 is 6, so  $\frac{2}{3}$  of 18 is 2 × 6, or 12.  $\frac{3}{2}$  of 18 would be 3 × 6, or 18.

4. Michael collected 21 sports cards.  $\frac{3}{7}$  of the cards are baseball cards. How many cards are not baseball cards?

The whole set is 21 cards. In order to show sevenths, I can draw 7 rectangles in a column and then continue drawing columns until I show all 21 cards.



12 of the cards are not baseball cards.

I drew horizontal lines to show the sevenths. I shaded in  $\frac{3}{7}$  to show the collection of baseball cards.

The question asked how many cards were *not* baseball cards, so I counted  $\frac{4}{7}$ , or 12, rectangles to get my answer.

In the other examples, I drew rows first. In this question, I drew columns first. Either way is correct, and either way will show my thinking accurately.