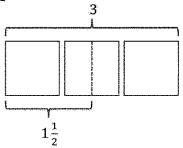

G5-M4-Lesson 3

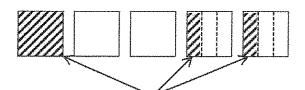

1. Fill in the chart.

Division Expression	Unit Form	Improper Fraction	Mixed Number	Standard Algorithm (Write your answer in whole numbers and fractional units. Then check.)
a. 3 ÷ 2	6 halves ÷ 2 =	3 2	1 1 2	2 $\frac{1}{2}$ Check: $2 \times 1\frac{1}{2}$ $= 1\frac{1}{2} + 1\frac{1}{2}$ $= 3$

I can visualize the drawings I made in the previous lesson. 3 crackers are shared equally by 2 people. I could partition each cracker into 2 equal parts and then share the 6 halves.

I can think of this another way too. Since there are 3 crackers being shared equally by 2 people, each person could get 1 whole cracker and $\frac{1}{2}$ of another.

@2015 Great Minds. eureka-math.org G5-M1-HWH-1.3.0-07.2015


Division Expression	Unit Form	Improper Fraction	Mixed Numbers	Standard Algorithm (Write your answer in whole numbers and fractional units. Then check.)
b. 5 ÷ 3	15 thirds ÷ 3 = 5 thirds	5/3	$1\frac{2}{3}$	3

This time I am given the mixed number. I know that $1\frac{2}{3}$ is the same as $\frac{3}{3}+\frac{2}{3}$, which is equal to $\frac{5}{3}$.

I can think of $\frac{5}{3}$ as a division expression, $5 \div 3$.

The standard algorithm makes sense. If there were 5 crackers being shared equally by 3 people, each person could get 1 whole cracker, and then the remaining 2 crackers would be partitioned into 3 equal parts and shared as thirds.

I can visualize one way to model this scenario:

Each person gets 1 whole cracker and $\frac{2}{3}$ of a cracker.