G5-M3-Lesson 8

- 1. Add or subtract. Draw a number line to model your solution.
 - a. $9\frac{1}{3} + 6 = 15\frac{1}{3}$

 $9\frac{1}{3}$ is the same as $9+\frac{1}{3}$. I can add the whole numbers, 9+6=15, and then add the fraction, $15+\frac{1}{3}=15\frac{1}{3}$.

I can model this addition using a number line. I'll start at 0 and add 9.

l add 6 to get to 15.

Then, I add $\frac{1}{3}$ to get to $15\frac{1}{3}$.

b. $18 - 13\frac{3}{4} = 4\frac{1}{4}$

 $13\frac{3}{4}$ is the same as $13+\frac{3}{4}$. I can subtract the whole numbers first,

18-13=5. Then, I can subtract the fraction, $5-\frac{3}{4}=4\frac{1}{4}$.

I start at 18 and subtract 13 to get 5. Then, I subtract $\frac{3}{4}$ to get $4\frac{1}{4}$.

2. The total length of two strings is 15 meters. If one string is $8\frac{3}{5}$ meters long, what is the length of the other string?

I can use subtraction, $15 - 8\frac{3}{5}$, to find the length of the other string.

 $15-8\frac{3}{5}=6\frac{2}{5}$

My tape diagram models this word problem. I need to find the length of the missing part.

I can draw a number line to solve. I'll start at 15 and subtract 8 to get 7. Then, I'll subtract $\frac{3}{5}$ to get $6\frac{2}{5}$.

The length of the other string is $6\frac{2}{5}$ meters.

Below is an alternative method to solve this problem.

I can express 15 as a mixed number, $14\frac{5}{5}$.

Now, I can subtract the whole numbers and subtract the fractions.

$$14 - 8 = 6$$

$$\frac{5}{5} - \frac{3}{5} = \frac{2}{5}$$

The difference is $6\frac{2}{5}$.

KA

Lesson 8:

Add fractions to and subtract fractions from whole numbers using equivalence and the number line as strategies.

 $14\frac{5}{5} - 8\frac{3}{5} = 6\frac{2}{5}$