G4-M5-Lesson 37

1. Draw tape diagrams to show two ways to represent 3 units of $5\frac{1}{12}$.

$5\frac{1}{12}$		$5\frac{1}{12}$		$5\frac{1}{12}$				
5		55)	3	1 12	1 12	1 12	

I rearrange the model for 3 copies of $5\frac{1}{12}$ by decomposing $5\frac{1}{12}$ into two parts: 5 and $\frac{1}{12}$. I show 3 groups of 5 and 3 groups of $\frac{1}{12}$.

Write a multiplication expression to match each tape diagram.

$$3 \times 5 \frac{1}{12}$$

$$(3 \times 5) + \left(3 \times \frac{1}{12}\right)$$

 $5\frac{1}{12}$ is composed of two units: ones and twelfths. I use the distributive property to multiply the value of each unit by 3. $3 \times 5\frac{1}{12}$ is equal to 3 fives and 3 twelfths.

2. Solve using the distributive property.

a.
$$2 \times 3\frac{5}{6} = 2 \times \left(3 + \frac{5}{6}\right)$$

 $= (2 \times 3) + \left(2 \times \frac{5}{6}\right)$
 $= 6 + \frac{10}{6}$
 $= 6 + 1\frac{4}{6}$
 $= 7\frac{4}{6}$

I omit writing this step for Part (b) because I can see it's 4 copies of 2 and 4 copies of $\frac{3}{4}$, or $8 + \frac{12}{4}$.

3. Sara's street is $1\frac{3}{5}$ miles long. She ran the length of the street 3 times. How far did she run?

$$s = 3 \times 1\frac{3}{5}$$

$$= (3 \times 1) + \left(3 \times \frac{3}{5}\right)$$

$$= 3 + \frac{9}{5}$$

 $s=4\frac{4}{5}$

I use the distributive property to multiply the ones by 3 and the fractional part by 3.

Sara ran $4\frac{4}{5}$ miles.

