G4-IVI5-Lesson 36

1. Draw a tape diagram to represent $\frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8}$.

3	3	3	3
8	8	8	8

I model 4 copies of $\frac{3}{8}$.

Write a multiplication expression equal to $\frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8}$

$$4 \times \frac{3}{8} = \frac{12}{8} = 1\frac{4}{8} = 1\frac{1}{2}$$

 $4 \times \frac{3}{8} = \frac{12}{8} = 1\frac{4}{8} = 1\frac{1}{2}$ Multiplication is more efficient than addition. I can solve easily by thinking in unit form: 4×3 eighths is 12 eighths.

2. Solve using any method. Express your answers as whole or mixed numbers.

a.
$$4 \times \frac{5}{8}$$

$$4 \times \frac{5}{8} = \frac{4 \times 5}{8} = \frac{20}{8} = 2\frac{4}{8} = 2\frac{1}{2}$$

b.
$$32 \times \frac{2}{5}$$

$$32 \times \frac{2}{5} = 32 \times 2$$
 fifths = 64 fifths = $\frac{64}{5} = 12\frac{4}{5}$

To solve, I think to myself, 5 times what number is close to or equal to 64? Or, I can divide 64 by 5.

3. A bricklayer places 13 bricks end to end along the entire outside length of a shed's wall. Each brick is $\frac{2}{3}$ foot long. How long is that wall of the shed?

$$13 \times \frac{2}{3} = \frac{13 \times 2}{3} = \frac{26}{3} = 8\frac{2}{3}$$

The wall of the shed is $8\frac{2}{3}$ feet long.

It would take too long to write an addition sentence to solve! Multiplication is quick and easy!