G4-IVI5-Lesson 16

Solve.

1. 5 sixths - 3 sixths = 2 sixths

2. 1 sixth + 4 sixths = 5 sixths

The units in both numbers are the same, so I can think "5 - 3 = 2," so 5 sixths - 3 sixths = 2 sixths.

I can rewrite the number sentence using fractions.

$$\frac{5}{6} - \frac{3}{6} = \frac{2}{6}$$

If I know that 1 + 4 = 5, then 1 sixth + 4 sixths = 5 sixths.

Solve. Use a number bond to rename the sum or difference as a mixed number. Then, draw a number line to model your answer.

3.
$$\frac{12}{6} - \frac{5}{6} = \frac{7}{6} = 1\frac{1}{6}$$

$$\frac{6}{6} \frac{1}{6} \checkmark$$

I can rename $\frac{7}{6}$ as a mixed number using a number bond to separate, or decompose, $\frac{7}{6}$ into a whole number and a fraction. $\frac{6}{6}$ is the whole, and the fractional part is $\frac{1}{6}$.

4. $\frac{5}{6} + \frac{5}{6} = \frac{10}{6} = 1\frac{4}{6}$

I decompose $\frac{10}{6}$ into 2 parts: $\frac{6}{6}$ and $\frac{4}{6}$. $\frac{6}{6}$ is the same as 1, so I rewrite $\frac{10}{6}$ as the mixed number $1\frac{4}{6}$.

I can think of the number sentence in unit form: 5 sixths + 5 sixths = 10 sixths.

I plot a point at $\frac{12}{6}$ because that is the whole. Then, I count backward to subtract $\frac{5}{6}$.

I draw a number line and plot a point at $\frac{5}{6}$. I count up $\frac{5}{6}$. The model verifies the sum is $1\frac{4}{6}$.

Lesson 16:

Use visual models to add and subtract two fractions with the same units.