G4-IVI4-Lesson 11

Write an equation, and solve for the unknown angle measurements numerically.

1.

I know from Lesson 5 that a circle measures 360° . I solve for h° by subtracting 27° from 360° .

2.

I solve for d° by adding together the known angle measures and then subtracting their sum from 360°.

$$190^{\circ} + 95^{\circ} + 75^{\circ} = 360^{\circ}$$

$$d^{\circ} = \underline{75^{\circ}}$$

3. T is the intersection of \overline{UV} and \overline{WX} . $\angle UTW$ is 51° .

$$g^{\circ} = \underline{129^{\circ}}$$
 $h^{\circ} = \underline{51^{\circ}}$ $i^{\circ} = \underline{129^{\circ}}$ $129^{\circ} + h^{\circ} = 180^{\circ}$ $51^{\circ} + i^{\circ} = 180^{\circ}$

$$129^{\circ} + h^{\circ} = 180^{\circ}$$
 $51^{\circ} + i^{\circ} = 180^{\circ}$ $i^{\circ} = 129^{\circ}$

 $h^{\circ} = 51^{\circ} \quad i^{\circ} = 129^{\circ}$

I can solve for io by thinking of its relationship to either \overline{UV} or \overline{WX} . But I also notice that opposite angles measure the same for this figure.

I solve for h° by thinking about the relationships of $\angle WTV$ and $\angle VTX$. Both angle measures add to 180° because they are on \overline{WX} .

$$51^{\circ} + g^{\circ} = 180^{\circ}$$
$$g^{\circ} = 129^{\circ}$$

I solve for g° by thinking of its relationship to $\angle UTW$. $\angle UTV$ is a straight angle that measures 180°.

4. P is the intersection of \overline{QR} , \overline{ST} , and \overline{UP} . $\angle QPS$ is 56°.

$$j^{\circ} = \underline{124^{\circ}}$$
 $k^{\circ} = \underline{56^{\circ}}$ $m^{\circ} = \underline{34^{\circ}}$

I solve for j° by thinking of the relationship $\angle SPQ$ and $\angle QPT$ have to \overline{ST} .

I solve for k^o by thinking of the relationship $\angle QPT$ and $\angle TPR$ have to \overline{QR} .

I solve for m° by noticing that $\angle UPR$ is a right angle; therefore, $\angle UPQ$ is also a right angle.

$$56^{\circ} + m^{\circ} = 90^{\circ}$$

$$m^{\circ} = 34^{\circ}$$

$$\frac{3}{3} \frac{4}{4}$$

U

56°

S