G3-M4-Lesson 10

1. Label the side lengths of the shaded and unshaded rectangles. Then, find the total area of the large rectangle by adding the areas of the 2 smaller rectangles.

$$7 \times 14 = 7 \times (\underline{10} + \underline{4})$$

$$= (7 \times \underline{10}) + (7 \times \underline{4})$$

$$= \underline{70} + \underline{28}$$

$$= \underline{98}$$

Area: 98 square units

I can count the units on each side to help me label the side lengths of each rectangle.

©2015 Great Minds, eureka-math.org G3-M4-HWH-1.3.0-10.2015 2. Vickie imagines 1 more row of seven to find the total area of a 9×7 rectangle. Explain how this could help her solve 9×7 .

This can help her solve 9×7 because now she can think of it as 10×7 minus 1 seven. 10×7 might be easier for Vickie to solve than 9×7 .

$$10 \times 7 = 70$$

$$70 - 7 = 63$$

This reminds me of the 9=10-1 strategy that I can use to multiply by 9.

3. Break the 16×6 rectangle into 2 rectangles by shading one smaller rectangle within it. Then, find the total area by finding the sum of the areas of the 2 smaller rectangles. Explain your thinking.

6 units

$$Area = (10 \times 6) + (6 \times 6)$$

$$= 60 + 36$$

The total area is 96 square units.

10 units

I broke apart the 16×6 rectangle into 2 smaller rectangles: 10×6 and 6×6 . I chose to break it apart like this because those are easy facts for me. I multiplied the side lengths to find the area of each smaller rectangle and added those areas to find the total area.

6 units

I can break apart the rectangle any way I want to, but I like to look for facts that are easy for me to solve. Multiplying by 10 is easy for me. I also could have broken it apart into 8×6 and 8×6 . Then I would really only have to solve one fact.

5)